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Traditional machine learning requires data centralization, creating compliance bottlenecks and security
risks. Federated Learning offers a paradigm shift by moving the computation to the data rather than
the data to the computation. Consequently, by aggregating learning across a consortium, businesses can
achive the data scale necessary to train enterprise-grade AI while maintaining data sovereignty.

Introduction

Artificial Intelligence (AI) and its subset, Machine Learning
(ML), have evolved into essential tools for modern enterprises
to maintain economic competitiveness. However, the substan-
tial volume of diverse, high-quality (structured) training data re-
quired to build accurate models presents a critical barrier that
often prevents widespread adoption. For medium-sized compa-
nies, this creates a fundamental dilemma: The data needed to
train competitive AI models is distributed across multiple or-
ganizations, yet sharing that data is neither legally permis-
sible due to strict regulatory frameworks (e.g., GDPR) nor
commercially desirable (e.g., risks of exposing trade secrets
or lack of trust in external providers).

Federated Learning (FL) offers a resolution to this conflict by
taking a fundamentally different approach compared to central-
ized solutions. The paradigm has seen a sharp increase in produc-
tion deployments worldwide over recent years. It enables (non-
competing) organizations to collaborate and train a shared,
powerful model without their raw data ever leaving their on-
premise servers. This document introduces FL and provides
an overview for organizations considering collaborative AI ini-
tiatives. The first part (Technical) explains the core mechanisms
and training process, alongside privacy and security safeguards.
The second part (Business Case) examines the strategic implica-
tions for SMEs and explores applications across industries.

Federated Learning

FL builds on standard ML models to enable collaborative model
training across organizations while mitigating data leakage risks.
Instead of requiring data to be centralized for training, FL dis-
tributes the computation to where the data naturally resides, en-
suring information remains within organizational boundaries [1].
While originally developed for mobile and edge devices (cross-
device FL) [2], the architecture has evolved to support robust en-
terprise collaboration (cross-silo FL) [3, 4].

CORE MECHANISM

To understand the value of FL, one must first recognize a funda-
mental principle of AI: Model performance scales with data
volume. If two companies in the same sector train separate
models based solely on their own respective data, each individ-
ual model will be less accurate and robust compared to a sin-
gle model trained on their combined data. Furthemore, isolated
datasets often suffer from local bias; by acessing diverse data
sources, the resulting model can achieve increased generalization.
In conventional ML, organizations would be forced to pool their
data on a central cloud server where a single model is trained on
the combied dataset. FL essentially inverts this architecture by
moving the training to the data rather than the data to the
training [2]. Consequently, it enables companies to benefit from
each other’s data without ever exchanging the data itself.
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In a business context, participants act as a stable consortium
of organizations that share an incentive to train a superior model,
yet cannot legally or commercially share their raw data directly
[5, 3]. We focus specifically on Horizontal Federated Learn-
ing, where datasets overlap in features but differ in samples [1].
For Horizontal FL to work effectively, clients must have data with
similar structures (same features/labels) but different entities. For
example, two regional utility companies may serve completely
different user groups (different samples), but their infrastructure
and business logic are identical (same features). By aggregating
the participants’ updates, FL allows the consortium to leverage
a massive dataset to produce a global model that significantly
outperforms what any single participant could achieve in iso-
lation [4, 6].

THE TRAINING & INFERENCE PROCESS
The FL training cycle is an iterative process consisting of rounds
of local training and global aggregation, designed to improve the
global model’s accuracy while maintaining data residency. Un-
derstanding this workflow clarifies both the technical feasibility
and the privacy guarantees of the approach. The standard work-
flow, often based on the FedAvg algorithm [2] or robust variants
like FedProx for heterogeneous enterprise data [7], is visualized
and compared to centralized learning in the graphic on the previ-
ous page. It proceeds as follows:

The Federated Learning Cycle

Initialization: Before the training loop starts, the central
server initializes a global model with random or pre-trained
parameters.

1 Distribution: The current model parameters are dis-
tributed to selected authorized clients in the consortium.

2 Local Training: Each client trains the model locally
within their secure infrastructure using their private data.

3 Reporting: The updated parameters, representing what
was learned locally, are sent back to the central server.

4 Aggregation: The server collects updates from partici-
pants and aggregates them (e.g., averaging) into a new,
smarter global model.

Convergence: This cycle repeats until the global model
reaches satisfactory performance, a predetermined number
of rounds is completed or early stopping triggers.

After training concludes, the final model is deployed to all
members for inference on their local data or for further company-
specific fine-tuning, granting every participant the collective in-
telligence of the entire network. Furthermore, if new organiza-
tions join or new data is collected, the model can be updated
continuously starting from the existing baseline. This allows for
continuous improvement and adaptation, resulting in a flexi-
ble solution for collective intelligence [8].

This mechanism provides several fundamental advantages: (1)
Physical Data Isolation ensures raw data never crosses organi-
zational boundaries [2]; (2) Reduced Communication Costs, as
model updates are orders of magnitude smaller than raw datasets
[9]; (3) Data Sovereignty allows organizations to satisfy legal
requirements [10]; (4) Dynamic Scalability suppors continuous
improvements and flexible consortium expansion [8]; and (5)
Risk Mitiganion trough decentralization, lowering the impact of
potential security breaches [11].

For further reading, see the following surveys: [3, 7, 1].

Privacy & Security
While the decentralized nature of FL inherently reduces the attack
surface by keeping data on-premise, its viability in enterprise set-
tings fundamentally depends on providing robust privacy and se-
curity guarantees—including protection against indirect informa-
tion leakage. Security in FL is not a single feature but a multi-
layered architecture combining cryptographic protocols and
privacy-preserving mechanisms [3].

TECHNICAL SAFEGUARDS
In a consortium, the primary technical security objective is to
ensure that neither the central aggregation server nor other par-
ticipants can inspect or reconstruct proprietary data. While we
have already highlighted the most fundamental safeguard, Phys-
ical Data Isolation (raw data never leaves each organization’s
infrastructure), further measures are required to ensure that the
shared model updates for aggregation do not inadvertently reveal
information about the underlying training data to the aggregation
server. Several mechanisms have been developed to guarantee
that raw data remains confidential while still enabling effective
collaborative learning.

A sophisticated solution is provided by Secure Aggregation
(SecAgg) protocols. Based on cryptographic techniques, SecAgg
prevents the server from analyzing individual updates [12, 8]. It
ensures the server can only decrypt the aggregated sum of all up-
dates, but never the individual contributions of a single client.
Each organizations update is encrypted before leaving the lo-
cal infrastructure, remaining mathematically inaccessible even to
the coordinating server. For applications requiring even stronger
guarantees, FL can incorporate Differential Privacy (DP) [13,
14]. By injecting a statistically calculated amount of noise into
the model updates, DP provides a formal mathematical guarantee
that the presence or absence of any single data point cannot be
reliably inferred from the trained model. While DP comes with
a model-accuracy trade-off, it effectively neutralizes reconstruc-
tion attacks and ensures the final model is safe for deployment.

REGULATORY COMPLIANCE
Beyond technical security, legal compliance is a key aspect for
oganizations to consider and take into account when choosing
a new technology. FL aligns naturally with European data
protection regulations, making it particularly attractive for op-
erations falling under the GDPR and related legislation [10]. Fur-
thermore, the architecture offers a distinct advantage over central-
ized cloud AI by adhering to the principles of Data Minimiza-
tion, Purpose Limitation, and Privacy by Design.

Data Localization & Sovereignty are inherently supported
because only model parameters are exchanged and personal data
never traverses the network or leaves the company’s premises.
The data controller retains full physical control at all times. This
enables collaborative analytics while significantly reducing com-
pliance friction surrounding complex legal constructs like data
sharing agreements or cross-border transfers1. Beyond GDPR,
FL aligns with emerging frameworks like the EU Data Gover-
nance Act (DGA), which encourages data sharing for innovation
whil protecting individual and commercial interests, and the EU
AI Act, which emphasizes transparency and data governance.

1While FL provides strong technical and architectural privacy guarantees, or-
ganizations must still ensure that their specific implementation complies with
applicable regulations. Data processing agreements, participant consent mech-
anisms (where required), and documentation of the FL process remain necessary
components of a compliant deployment.
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